A DERIVATION OF A FORMULA IN THE TUTORIAL PAPER OF LAWRENCE RABINER

ON HIDDEN MARKOV MODELS.

Abdulrahman O. Ibraheem

Department of Computer Science and Engineering, Obafemi Awolowo University, Ile-Ife, Nigeria.

rahmanoladi@yahoo.com

Statement of Problem: To show the following relation:

$$\sum_{d=1}^{\infty} d a_{ii}^{d-1} (1 - a_{ii}) = \frac{1}{1 - a_{ii}} \quad \text{where } 0 \le a_{ii} \le 1$$

Source of Problem: The above relation occurs as Equation 6*b* in the paper titled "A Tutorial on Hidden Markov Models and Selected Applications to Speech Processing," by Lawrence Rabiner. The paper provides context for the relation.

Solution:

Let us write $S_{\infty} = \sum_{d=1}^{\infty} d a_{ii}^{d-1} (1 - a_{ii})$. We wish to show that $S_{\infty} = \frac{1}{1 - a_{ii}}$

Further, let the sum of the first d terms in the series S_{∞} be denoted S_d . We have:

$$S_{d} = (1 - a_{ii}) + (2 a_{ii} - 2 a_{ii})^{2} + (3 a_{ii}^{2} - 3 a_{ii})^{3} + \dots + ((d-1) a_{ii}^{d-2} - (d-1) a_{ii})^{d-1} + (d a_{ii}^{d-1} - d a_{ii})^{d}$$

$$= 1 + (-a_{ii} + 2 a_{ii}) + (-2 a_{ii})^{2} + 3 a_{ii})^{2} + \dots + (-(d-1) a_{ii})^{d-1} + d a_{ii})^{d-1} - d a_{ii}^{d}$$

$$S_{d} = 1 + a_{ii} + a_{ii})^{2} + a_{ii}^{3} + \dots + a_{ii})^{d-1} - d a_{ii}^{d}$$

Set
$$G_d = 1 + a_{ii} + a_{ii}^2 + a_{ii}^3 + \dots + a_{ii}^{d-1}$$

We can combine Equations 1 and 2 to write:

$$S_d = G_d - da_{ii}^{\ d}$$

But, $S_{\infty} = \lim_{d \to \infty} S_d = \lim_{d \to \infty} (G_d - da_{ii}^{\ d}) = \lim_{d \to \infty} G_d - \lim_{d \to \infty} da_{ii}^{\ d}$
3

Clearly G_d is a geometric series with common ratio $r = a_{ii}$ and first term, a = 1. Notice that, because it is given that $0 \le a_{ii} \le 1$, it follows that $|r| \le 1$. The fact that $|r| \le 1$ allows us to write the sum to infinity of G_d as follows:

$$\lim_{d \to \infty} G_d = \frac{1}{1 - a_{ii}}$$

We can put this result in Equation 3 to obtain:

$$S_{\infty} = \frac{1}{1 - a_{ii}} - \lim_{d \to \infty} da_{ii}^{\ d}$$

Let us now focus on the term $\lim_{d\to\infty} da_{ii}^{d}$ in Equation 3. We wish to show that $\lim_{d\to\infty} da_{ii}^{d} = 0$. In other words, we wish to show that the sequence $\{da_{ii}^{d}\}_d$ converges. Define $f(d) = da_{ii}^{d}$, and $f(x) = xa_{ii}^{x}$ respectively, where x is a continuous variable which can assume **all values** in the real interval $(0, \infty)$, unlike d which is a discrete variable, which can only assume **positive integer values** on the interval $(0, \infty)$. It should not be hard to see that f(d) is a subsequence of the sequence f(x). A theorem in the Calculus says that if a sequence converges, then its subsequences must also converge. Therefore, to show that f(d) converges, it is sufficient to just show the convergence of f(x).

Now,

$$\lim_{x \to \infty} f(x) = \lim_{x \to \infty} x a_{ii}^{x} = \lim_{x \to \infty} \frac{x}{a_{ii}^{-x}} = \frac{\infty}{\infty}, \text{ where the third equality rests heavily on the given: } 0 \le a_{ii} \le 1$$

The appearance of the form $\frac{\infty}{\infty}$ suggests that we try L'Hopital's rule. We set g(x) = x and $h(x) = a_{ii}^{-x}$, so that :

$$\lim_{x\to\infty}f(x)=\lim_{x\to\infty}\frac{g(x)}{h(x)}$$

L'Hopital's rule allows us to write:

$$\lim_{x\to\infty} f(x) = \lim_{x\to\infty} \frac{g'(x)}{h'(x)} = \lim_{x\to\infty} \frac{1}{-a_{ii}^{-x} \log a_{ii}^{-x}} = 0$$

The above result says that f(x) converges as x tends to infinity. It follows, as earlier discussed, that f(d) too must converge as d tends to infinity. Thus, we have:

$$\lim_{d \to \infty} da_{ii}^{\ d} = \lim_{d \to \infty} f(d) = 0$$

Putting Equation 6 into Equation 5, we get the result we set out prove:

$$S_{\infty} = \frac{1}{1 - a_{ii}} - 0 = \frac{1}{1 - a_{ii}}$$