
1

ALIASE: Application of Least Inertia Axis for Skeleton Extraction in Handwritten Character Images.

Abdul-Rahman O. Ibraheem

Computing and Intelligent Systems Research Group, Dept. of Computer Science and Engineering,
Obafemi Awolowo University, Ile-Ife, Osun State, Nigeria.

Abstract
For the case of character images, we present a first response to the question of whether the axis of least inertia can
lead to a symmetry-seeking skeleton representation for shapes. We developed an algorithm that iteratively
partitions an image into sub-regions until the content of each sub-region is sufficiently (as determined by two
thresholds) approximated by its axis of least inertia. Experiments showed the algorithm produces useful
skeletons comprised of line strokes, when appropriate thresholds are hand-chosen. Specifically, experiments
suggested thresholds increase with increasing character width. Therefore, towards automatic thresholding, we
propose a future study on modeling the relationship between thresholds and widths. However, an advantage of
our approach is that it unifies skeletonization and stroke extraction; unlike stroke extraction via standard routes,
our approach is free of errors from preliminary thinning. For completeness, we studied the run time of our
algorithm rigorously. Although rigor shows an ܱ(ܰଶ) run time for our algorithm, experiments revealed a sort of
desirable “linear performance.”

1 Introduction
Imagine a sub-region of the image of a line drawing,
such as the English letter “F.” If the “line” within a
sub-region of the letter is reasonably straight, then it
should be possible to approximate it by its axis of least
inertia (ALI). Based on this intuition, we developed an
algorithm, which we refer to as ALIASE (Application of
Least Inertia Axis for Skeleton Extraction), and which
iteratively partitions the image of a line drawing until
the content of each sub-partition is reasonably straight,
and can thus be approximated by its ALI. The expected
effect is that the algorithm converts a binary image into
a set of line segments which approximates the shape of
the image. For an early feel, we show a sample output
in Fig. 1, and reserve others for the section on
"Experiments."

Fig. 1. Letter "F" being Converted to a Set of Strokes.
(a) A binary image; (b) the strokes produced by our algorithm
for the binary image in (a)..

Looking at Fig. 1, it is obvious that the “F” formed by
the output line segments resemble the original binary
image very closely. However, the line segments
disconnected. Traditionally, connectivity is one of the

important criteria for good skeletonization/thinning
techniques. For graphics applications, we concur that
connectivity is a lofty aesthetic goal worth pursuing
assiduously. However, for recognition applications,
which is our concern herein, we opine that connectivity
needs not show up directly in the skeleton’s image;
after all, the skeleton will still be segmented and
converted into a graph, for recognition purposes. Thus,
what matters most is whether the underlying
connectivity information can be successfully
transferred to the final graph recognition structure. As
it turns out, it can be transferred. Specifically, in the
final graph representation, the nodes corresponding to
any two output line segments should be linked by an
edge if and only if the binary sub-image corresponding
to the first node contains a foreground pixel that is a
neighbor to a foreground pixel in the binary sub-image
corresponding to the second node. On the flip side
though, we must highlight a strength of our approach:
it performs thinning and stroke extraction in a single
module, unlike traditional approaches (e.g. [1], [2]) that
first thin the image, and then subsequently extract
strokes from the thinned image, using say the Ramer –
Douglas-Peucker algorithm [3]. This means that our
approach is free from errors committed at the
preliminary thinning stage.

2 Related work
 Our work herein falls under the heading of structural
shape representation, and, in particular, skeleton
representations. To begin with, we point out that the
skeleton representation paradigm leads to useful
applications; see the works in [4], [5], [6], and [7] for
examples. A key goal of skeletonization methods has
been to implement the medial axis transform (MAT) of
Blum [8]. The MAT of an image is the locus of the

(a) (b)

2

centers of bi-tangential circles inscribable in the image
[9]. As in [10] and [11], the distance transform can be
used to implement the MAT. To obtain the distance
transform, one first computes a distance map, which
contains the distance of each point in the image from
the nearest boundary point. One then locates the
desired skeleton along the local extreme points of the
distance transform. Recently, Latecki et. al. [12] have
used the distance map to obtain shape skeleton in a
different way. They first compute a “pseudo-
representation” of the distance transform field. They
then diffuse the gradient of the result isotropically, and
compute a skeleton strength map from this. Finally,
they obtain the skeleton as the local maxima of the
strength map.

Further, a significant contribution, the well known
shock graph, is due to Steve W. Zucker and
collaborators [13]. The shock graph approach tracks
singularities that occur as the closed boundary of a
shape evolves under two types of motion: a constant
hyperbolic conservation-law motion, acting through
the shape’s interior, and a local curvature dependent
parabolic conservation law motion that tends to
smooth the boundary anisotropically. More recently,
Macrini et. al. [14] have improved on the shock graph,
via what they call bone graphs. In particular, bone
graphs are aimed at remedying the problem of over
segmentation, which sometimes plagues shock graphs.
What might informally pass for a “discrete version” of
shock graphs is in the approach of [15], who computed
skeletons by exploiting the concept that the critical
points on the boundary of a shape correspond to
skeletal end-points, under discrete curve evolution.
They use particle filters to link critical points up, thus
forming the required skeleton. Further in the earlier
cited work of Choi et. al. [10], based on skeleton width
considerations, a set of criteria are derived which a
skeleton point’s 3 × 3 neighbourhood must satisfy. A
pixel is dismissed as not being a skeleton point if no
pixel in its 3 × 3 neighbourhood satisfy the criteria.
One problem with skeleton representations has to do
with spurious branches. In very recent work, Shen et.
al. [4] contributed towards solving this problem. They
proposed the bending potential ratio as a measure of
skeleton branch significance. The bending ratio
purportedly captures both local and global curvature
information of shape boundary segment, and so is
expected to be a reliable measure of skeleton branch
significance.

Probably beginning with [16], a body of research exists
which connects Voronoi diagrams, as well as Delaunay
triangulations with skeletonization. In this arena, we
should mention the work of [17] who followed the
Voronoi approach: an approach which computes
skeletons as a subset of the Voronoi medial axis, which
in turn is the intersection of the shape and the Voronoi
polygons obtained using a subset of shape boundary
points as generating points. A main contribution of [17]

was the introduction, as a measure of skeleton branch
significance, of the anchor distance, which, for an edge
of the Voronoi medial axis, is the shortest path between
corresponding generating points along the shape’s
boundary. Later, Morrison and Zou [18] used
Delaunay triangulations, in place of Voronoi diagrams,
for obtaining skeletons. As one of their key
contributions, they proposed a novel technique for
choosing boundary “generating points.” Very recently,
Liu et. al. [19] described the generalized Voronoi
skeleton (GVS). A major difference between the GVS
and “traditional Voronoi skeletons” is that it uses curve
segments as generating points rather than single pixels.
Further, they proposed shape area associated with (in
the “shape reconstruction sense”) skeleton branch
divided by total shape area as one of two measures of
skeleton branch significance.

Yet, a class of skeletonization methods iteratively peel
boundary pixels from the shape, subject to shape-
remnant connectivity, until hopefully a one-pixel
width skeleton results. A comprehensive survey of this
class of methods is in [20]. In this context, a
representative approach is that of Rutovitz [21]. He
used crossing numbers, defined over a 3 × 3
neighbourhood of pixels as the number of white-to-
black or black-to-white transitions, to decide whether a
pixel be deleted or not. Later, Hilditch [22] introduced
a definition of crossing numbers as approximately the
number of white-to black transitions encountered in a
counter-clockwise walk around the 3 × 3 pixel
neighbourhood. A more recent work within this
category is that of Ahmed and Ward [23]. They
proposed a rule-based algorithm, employing twenty
rules, defined over a 3 × 3 pixel neighbourhood, to
determine whether pixels can be deleted or not. For
two-pixel wide regions, they examine 5 × 5
neighbourhoods. Rockett [24] improved upon the
above algorithm, designing a two-stage strategy, whose
first stage uses the algorithm of [23] to obtain an
intermediate result, which is an ideal skeleton, except
that it may contain two-pixel wide lines. The second
stage of the strategy constructs an undirected graph
over 3 × 3 pixel neighbourhoods; the centre pixel is
deleted if it does not break connectivity of the graph.

Our approach differs from any of the above referenced
techniques. In typical structural character recognition
applications, the character is first thinned using any of
the above thinning methods. Strokes are then extracted
from the thinned character, for example via the Ramer-
Douglas-Pecucker algorithm. However, in our
approach, thinning and stroke extraction are combined
into a single stage, so that our approach is free from
errors committed during preliminary thinning.

3 Illustrating ALIASE
Although we depict the quintessence of ALIASE in the
tree shown in Fig 2, we first give a general outline of its
workings as follows. ALIASE begins action by first

3

 Node ݒ at level ܮ

 Node ݒଵ
 at level ܮଵ

 Node ݒଶ
 at level ܮଶ

using connected component labeling to determine the
number of objects in the image space. All objects found
are pushed unto a stack. Then, we pop out the object at
the top of the stack. The ALI of the object is computed,
along with the mean absolute deviation of all its pixels
from the just computed axis. If the mean deviation falls
below a pre-defined threshold, ߬, then we are done
with that object; we need not divide it any further. We
simply output its properties: its centroid, ALI, and
bounding box, which are then used to draw an output
line segment. However, if this mean deviation is
greater than ߬, then the image is partitioned into two
(possibly unequal) halves, either vertically or
horizontally. We then apply connected component
labeling to find the objects in each half, pushing all
found objects onto the stack. At this point, a while loop
checks if the stack is empty or not. If it is, the
procedure terminates. If it is not, the next object on top
of the stack is popped out, and the previously
explained procedures are applied to it.

Fig. 2. An Example ALIASE Partition Tree

In Fig. 2, we show how the letter “U” might be
processed by ALIASE. The “U” is first divided
horizontally into an upper region containing two
elements; and a lower region containing one element.
The two elements in the upper region are both
sufficiently straight. So, they appear as leaf nodes in the
tree. The single element in the lower region requires
further division. It is divided horizontally into an
upper region and a lower region. This time, all three
elements produced by the splitting require no further
division, and so appear as leaf nodes.

We call trees of the type in Fig. 2 ALIASE Partition
Trees (APTs). Our formal definition of an APT is a tree
"generated" when our algorithm is invoked with an
݉ × ݊ (݉ ≥ 2 and ݊ ≥ 2) binary image, ܫ, and a ߬ ≥ 0.
We say that the tree in Fig. 2 has tree levels: ܮ,ܮଵ and
 ଶ, with the height of a tree equal to the maximumܮ
index associated with any level in it. We take the length
of a path through a tree to be the number of edges in
the path. Lastly, we refer to an object contained in the
leaf node of an APT as a primitive.

We see from the above discussion that ALIASE
comprises five main building blocks: computation of
axes of least inertia, which subsumes computation of
centroids; computation of mean deviations; image
space partitioning; connected component labeling; and
computation of bounding boxes.

4 Describing the components of ALIASE
This section is devoted to a detailed discussion of the
first three main building blocks of ALIASE. As for the
fourth, we use the method in [25] ; the fifth is a well
known technique [26].
.
4.1 Axis of Least Inertia (ALI)
The ALI of a shape is a line which gives the direction
along which the shape is most elongated [26]. It is a
line which passes through the object's centroid, and
minimizes the sum of the squares of perpendicular
distances from itself and each point in the object [26]. If
it is denoted by ߙ, then it can be shown that:

ߙ2 = 	 tanିଵ(2ߤ ൫ߤ ⁄൯ߤ–) (1)

 where ߤ ߤ and ߤ are respectively the second order
column moments, the second order row moments, and
the second order mixed moments of the object about its
centroid, (ݎ,ഥ ܿ̅). In symbols, for an object ܴ, we have:

ߤ = (1 ⁄ܣ)∑ 	(ܿ − ܿ̅ோ)(ܿ − ܿ̅) (2)

ߤ = (1 ⁄ܣ)∑ ݎ)	 − ோݎ̅ ݎ)(− (3) (ݎ̅

ߤ = (1 ⁄ܣ)∑ 	(ܿ − ܿ̅ோ)(ܿ − ܿ̅) (4)

4.2. Mean Deviation
Our algorithm uses mean absolute deviation to
distinguish between “reasonably straight” objects and
not reasonably straight objects. We denote the mean
absolute deviation of an object by ݀̅, and define it
according to:

 ݀̅ = (1/݊)∑ ݀

ୀଵ (5)

In the object in question, ݀ represents the absolute
deviation of the ݅-th pixel from the ALI; and ݊ is the
number of pixels in that object. To be most specific, for
each pixel, , ݀ is measured from the center of . It
should be easy to see that, in the worst case, for an
݉ × ݊ image, ܫ, with ܰ = ݉ × ݊, Equation (5) requires
ܱ(ܰ) time.

We draw attention to a special type of primitives,
which we call primitive cells. A primitive cell is an
object which exactly fills either a 1 × ݊ image space, or
a ݉ × 1 image space. A special property of primitive
cells is that they have mean absolute deviation of zero.

4

4.3. Image Space Partitioning.
Our image space partitioning algorithm is motivated
by one basic consideration, illustrated in Fig. 3. In the
figure, the thick line shows what we consider a "line of
good partitioning," while the dashed line represents
what we consider a "line of bad partitioning." From the
figure, we see that each time the line representing a
good partitioning enters an object, ܴ, through some
foreground pixel having row (or column) co-ordinates
ܽ, it quickly exits it via another foreground pixel
having row (or column) co-ordinates ܾ, with the
quantity |ܾ − ܽ| being "small." On the other hand, for
lines of bad partitioning, there is at least one instance
wherein the line enters the object via a foreground pixel
having row (or column) co-ordinate ܽᇱ and exits via
another pixel with row (or column) co-ordinate ܾᇱ, with
the quantity |ܾᇱ − ܽᇱ| being "large." Physically, good
partitioning tends to preserve the line segments being
sought by ALIASE, while bad partitioning tends to
destroy them. Via experimentation, it is possible to
arrive at a threshold, ௧, such that whenever |ܾ − ܽ| ≤
 ,௧, the partitioning in question is considered good; else
it is deemed bad.

 Fig. 3. Good versus Bad Lines of Partitioning. The
 thick line is a line of good partitioning, but the thin
 line is a line of bad partitioning.

The aim is divide the image (or sub-image), ܫ, into two
sub-images via the line of good partitioning closest
either to the middle row or the middle column of ܫ.
Without loss of generality, for the case wherein the
number of columns, ݊, is greater than or equal to the
number of rows, ݉, of ܫ, then the order in which our
algorithm searches for a line of good partitioning is
specified by the ordered set, ܵ,:
ܵ = ݎ} = ܿ ,ݎ = ܿ, ݎ = ݎ + 1, ܿ = ܿ + ݎ ,1 = ݎ − 1,
ܿ = ܿ − 1, ݎ = ݎ + 2,	ܿ = ܿ + 2, ݎ = ݎ − 2, ܿ = ܿ −
2, ⋯ , ݎ = 1, ⋯, ܿ = 1}; where ݎ and ܿ respectively
denote the (ݎ, ܿ) raster co-ordinates of the middle row
and middle column of ܫ. If no line of good partitioning
is found in ܵ, the image is arbitrarily divided along ݎ
.

5 Maximum height of partition trees and maximum
 run time of ALIASE
In this section, we conduct a formal analysis of the run
time of ALIASE. We follow the analysis of merge sort
algorithm in [27]. The idea is to sum the count of
operations at each level of the tree "generated" by the
algorithm (for our purpose, ALIASE partition trees, or
APT) over the maximum height of the tree. Towards
this goal, we first need to place a bound on the height
of APT. We then count operations at each level of the
tree, and then sum up this count over the height of the
tree. We claim that, for any ݉ × ݊ image, ܫ, (with ݉ ≥ 2
and ݊ ≥ 2) the height of any APT rooted at ܫ cannot
exceed ݉ + ݊ − 3. Towards proving this claim, we need
some formalism:

Definition 1. Let ܶ be a tree whose nodes are
rectangular sub-images. We refer to ܶ as a partition tree
if:
1). The root node of ܶ holds an ݉ × ݊ image with ݉ ≥ 2
and ݊ ≥ 2.
2). Each non-leaf node, ݒ, in ܶ has children ݒଵ,ݒଶ,⋯ , ݒ
satisfying: ݒଵ ∪ ଶݒ ∪⋯∪ ݒ ⊂ ଵݒ and ݒ ∩ ଶݒ ∩⋯∩ ݒ =
∅.
3). In ܶ, any node, ݒ, holding an ݎ × ܿ sub-image cannot
bear children, if either ݎ = 1	or ܿ = 1.

Let us observe the relationship between the definition
of a partition tree, given above, and that of an APT,
given earlier in Section 3. In particular, let us appreciate
how the third condition above stipulates that primitive
cells (a type of primitives) cannot be further
partitioned. This is in perfect consonance with what
happens within APTs, wherein primitives, which
subsume primitive cells, cannot be further partitioned.
The crux of our juxtaposition should be the realization
that: all APTs are instances of partition trees, but not all
partition trees are APTs. A strong benefit of this is that
properties, such as upper or lower bounds, that apply
to partition trees will also apply to APTs as well.

Definition 2. Suppose ܲ = ⋯,ଵݒ,ݒ , is a path ofݒ
length ݈ in a partition tree, ܶ. We call ܲ a root path in ܶ,
if ݒ is the root node of ܶ.

Definition 3. Given a path ܲ = in a partitionݒ⋯ଵݒ,ݒ
tree, ܶ. We say that ܲ is prudent if, for each node
݅)ݒ ≥ 1) in ܲ, the sub-image at ݒ is smaller than that
at ݒ's parent node, ݒିଵ, by exactly one row or column.

We are ready to state the first lemma of this section:

Lemma 1. Let ܶ be a partition tree rooted at an image ܫ,
and let ݈∗ be the maximum possible length of any root
path in ܶ. If a given root path, ܲ, in ܶ has length ݈∗, then
ܲ is prudent

ݎ = ܽᇱ 		ݎ = ܽ

ݎ = ܾ

ݎ = ܾᇱ

5

Proof We go by contradiction. Let
ܲ = ⋯,ଵݒ,ݒ , ݒ,ିଵݒ ,⋯ , be a root path of lengthݒ,ିଵݒ
݈ in some partition tree ܶ. Suppose ݈ = ݈∗, but that ܲ is
not prudent. For each node ݒ (݅ ≥ 1), in ܲ, the sub-
image at ݒ must be smaller than that at ݒ's parent
node, ݒିଵ, by at least one row or column. Otherwise,
no partitioning occurred at ݒିଵ; so, how did ݒ come
about ? Now, by the supposition that ܲ is not prudent,
it means there is at least one pair of consecutive nodes
 ିଵ by eitherݒ is smaller thanݒ in ܲ such thatݒ,ିଵݒ
more than one row or more than one column. Without
loss of generality, assume, for example, that ݒ is
smaller than ݒିଵ by ݎ + 1 rows (ݎ ≥ 1). This allows for
the possible existence of another path ܲᇱ which can be
built from ܲ, by simply introducing extra ݎ nodes
between ݒିଵ and ݒ, such that each of these extra nodes
differs from its parent node by exactly one row.
Labeling these ݎ nodes as ݒଵ,ݒଶ,⋯ , , the pathݒ
between ݒିଵ and ݒ becomes ݒିଵ,ݒଵ,ݒଶ,⋯ , ݒ , , soݒ
that ܲᇱ can be written
ܲᇱ = 	 ⋯,ଵݒ,ݒ , ⋯,ଶݒ,ଵݒ,ିଵݒ ݒ, , ݒ ,⋯ , . Thisݒ,ିଵݒ
makes it clear that the length of ܲᇱ is ݈ + ݎ = ݈∗ + ,ݎ
which is greater than ݈∗; a contradiction of the
supposition that ݈∗ is the maximum possible length of
any root path in ܶ.

We proceed with:

Lemma 2. The maximum possible length, ݈ ∗, of any root
path in any partition tree, ܶ, rooted at an ݉ × ݊ image,
݉ is ,ܫ + ݊ − 3. In other words: ݈∗ ≤ 	݉ + ݊ − 3.

Proof. Notice Lemma 2 requires us to show ݈∗ < ݉ +
݊ − 2. Now, suppose ܲ = ⋯,ଵݒ,ݒ , is a root path withݒ
length ݈∗. By Lemma 1, ܲ is prudent: each edge in ܲ
corresponds to either a loss of exactly one row, or a loss
of exactly one column. But these rows and columns
being lost come from a finite store of ݉ rows and ݊
columns contained in the image, ܫ, at the root node, ݒ,
of ܶ. This allows us to write: ݈∗ ≤ (݉− 1) + (݊ − 1) =
݉ + ݊ − 2; that is, we can lose at most (݉− 1) rows
and at most (݊ − 1) columns from ܫ, because the sub-
image at the last node, ݒ, in ܲ must, at least, subsume a
pixel. It should be clear that, if we can show that
݈∗ ≠ ݉ + ݊ − 2, then we are done. Towards this,
suppose, for a contradiction, that ݈∗ = (݉− 1) + (݊ −
1), and then introduce a formalism: a sequence ሬܴ⃑ of
horizontal and vertical razors, such that an horizontal
razor, denoted ℎሬ⃑ , removes a single row from an image,
while a vertical razor, denoted ⃑ݒ, removes a single
column from an image. In essence, each ℎሬ⃑ corresponds
to an edge in path ܲ; likewise each ⃑ݒ. With this, it
means to lose ݉− 1 rows and ݊ − 1 columns from an
݉ × ݊ image, ܫ, we need a set ሬܴ⃑ containing ݉− 1 ℎሬ⃑ 's as
well as ݊ − s. Now, observe that a primitive cell will'ݒ⃑ 1
occur in ܲ either once the (݉− 1)-th ℎሬ⃑ is encountered
in ሬܴ⃑ , or once the (݊ − 1)-th ⃑ݒ is encountered in ሬܴ⃑ . But
according to the third condition in our formal
definition of partition trees, ܲ can have only one

primitive-cell node, and this primitive-cell node will be
the last node of ܲ. Therefore, the razor which causes a
primitive cell to occur must be in the last position of ሬܴ⃑ .
So, if both the (݉− 1)-th ℎሬ⃑ and the (݊ − 1)-th ⃑ݒ must
co-exist in ሬܴ⃑ , they must both occupy the last position in
ሬܴ⃑ , simultaneously: a sheer contradiction.

With the aid of Lemma 2, we arrive at a key result:

Theorem 1. The maximum possible height, ℎ∗, of any
partition tree, ܶ, rooted at an ݉ × ݊ image, ܫ, is
݉ + ݊ − 3. In other words: ℎ∗ ≤ 	݉ + ݊ − 3.

Proof. Consider a specific partition tree, ܶ, rooted at an
݉ × ݊ image, ܫ. Following the definition given near the
end of Section 3, the height, ℎ், of ܶ is equal to the
maximum index, ்݅, associated with any level of ܶ.
Looking at Fig. 2 in that section, ்݅ is also the length,
்݈, of the "longest" root path in ܶ. We may thus write,
ℎ் = ்݅ = ்݈. Therefore, across all possible partition
trees that can be generated on ܫ, the maximum possible
height, ℎ∗, of any of such trees must equal the
maximum possible length ݈∗ of any of them.
Consequently, by virtue of Lemma 2, we have:
ℎ∗ = ݈∗ ≤ 	݉ + ݊ − 3..

Remark 1. Since APTs are examples of partition trees,
Theorem 1 applies as well to APTs .

We can now show that our algorithm runs in ܱ(ܰଶ)
time. As earlier mentioned, the idea is to sum the
count of operations at each level of an APT over the
maximum possible height of the APT. From Theorem
1, we already know that, for an ݉ by ݊ image, the
maximum possible height of any partition tree
generated by our algorithm is ݉ + ݊ − 3. Therefore,
what remains is to track the operations at each level of
our APTs. Towards this, we note that, if the image at
the root of an APT contains ܰ pixels, then no matter
how the partitioning proceeds, there will be a total of
ܰ pixels at any level of the APT. Now, at any node of
an APT, there is maximum of five kinds of major
operations to be performed: computation of connected
component labels; computation of bounding boxes;
computation of axes of least inertia, which subsumes
computation of centroids; computation of mean
absolute deviations; and computation of lines of good
partitioning. Each of these take a maximum of ܱ(ܲ)
time for a sub-image of ܲ pixels. Since there is a total of
exactly ܰ pixels at any level of an APT, we conclude
that a total time of ܱ(5ܰ) = ܱ(ܰ) is spent at each level
of the APT. Hence, the total amount of time across all
levels is ܱ൫	ܰ(݉ + ݊ − 3)൯. Now, via induction, it is shown
in the appendix that, for all ݉ ∈ ℤ,݊ ∈ ℤ, such that ݉ ≥ 2
and ݊ ≥ 2, we have ݉ + ݊ − 3 ≤ ݉݊ = ܰ. Thus the total
time taken by our method is ܱ൫	ܰ(݉ + ݊ − 3)൯ =
ܱ(ܰଶ). We shall soon confirm this experimentally.

6

6 Experiments
We exhibit results of ALIASE for characters of the
English alphabet; explore the variation of threshold
values, ߬ and ௧ with image scale, and hence character
width; answer the question of which image form, and
threshold values, cause ALIASE to run for the longest
time; and plot worst-case running times of ALIASE.

6.1 Line Segments Computed by ALIASE
We tested our algorithm on 40 × 40 handwritten
uppercase English letters. We show sample results in
Figure 4. Except for the last row, all other outputs in
the figure have been produced using thresholds ߬ = 1.6
and ௧ = 6. The key thing to notice about the outputs
(except those on the last row) is that ALIASE is capable
of producing line segments which resemble the
original image. As was pointed out in Section 1, the
line segments output by ALIASE are disconnected, but
this is not a source of worry in recognition applications,
since connectivity information can still be extracted
directly from the underlying binary image (as
explained in Section 1). A key source of worry however
is that a single pair of threshold values does not work
for all 40 × 40 binary images. For example the
threshold pair, ߬ = 1.6 and ௧ = 6, does not work well
for the 40 × 40 binary image of “Y” on the last row of
Figure 4. Rather, we found that ߬ = 1.9 and ௧ = 7
works well for it. Specifically, when we tried ߬ = 1.6
and ௧ = 6 on that “Y”, we got the output immediately
to the right of the original binary image of the “Y.”
Notice that that output contains undesirable zigzag
lines (due to over segmentation) in the upper right
area. A careful scrutiny of the original binary image
shows that its upper right area is markedly fatter than
the other areas; observe the two bulges, one to the left
and one to the right, in that upper right area. This
suggests that the reason why the zigzag lines showed
up in the upper right area of the output is that that area
corresponds to a fat area in the original image. To
remove the zigzags, we simply increased the threshold
values from ߬ = 1.6 and ௧ = 6 to ߬ = 1.9 and ௧ = 7.
This resulted in the second output on the last row of
Figure 4. Notice especially that the zigzag lines have
now disappeared. This hints at the hypothesis that
threshold values increase with character width, a topic
which we explore in greater details in the next sub-
section.

6.2 Variation of ߬ and ௧ with Image Size and Character
Width
Suppose ALIASE works well with thresholds ߬ଵ and
 ,ଶܫ ଵ is enlarged to yieldܫ ଵ. Whenܫ ,௧,ଵ on an image
there would be a need to increase the thresholds to
new values ߬ଶ and ௧,ଶ. The reason for increasing ߬ଵ is
that any given primitive line in ܫଶ will be thicker, and
consequently have higher mean absolute deviation,
than its counterpart in ܫଵ. Therefore in ܫଶ, the mean
absolute deviation corresponding to the primitive line
may not fall below ߬ଵ. Hence, in the image ܫଶ, the
"given primitive line" might be further partitioned by

ALIASE, resulting in a situation wherein a primitive is
unnecessarily further divided. This causes over
segmentation and causes ALIASE to output zigzag
lines. The rationale for the needed increment in ௧,ଵ is
that, since the strokes in ܫଶ will be thicker than their
counterparts in image ܫଵ, it would be generally harder
to find lines of good partitioning in ܫଶ using ௧,ଵ.

 Conversely, when ܫଵ is reduced in size to obtain a new
image ܫ, there would be a need to decrease the
thresholds ߬ଵ and ௧,ଵ to new values ߬ and ௧,. The
reason for the needed reduction in ߬ଵ is that any given
primitive line in ܫ will be thinner, and thus have
lower mean absolute deviation, than its counterpart in
the original image ܫଵ. As such, while primitives alone
yielded values of mean absolute deviations falling
below ߬ଵ in the image ܫଵ, it would be possible for non-
primitives, along with primitives, to yield values of
mean absolute deviations falling below the value ߬ଵ in
the case of image ܫ. In ܫ, this results in a situation in
which non-primitives are taken as primitives by
ALIASE. This can cause obliteration, a situation in
which significant portions of the original image are not
accounted for by the output line segments.

Fig. 5a shows a 40 × 40 binary image which is
converted by ALIASE, using ߬ = 1.6 and ௧ = 6, to the
line segments in Fig. 5b. Next, we enlarged the binary
image by a factor of two, producing thereby an 80 × 80
image. We then passed this 80 × 80 binary image to
ALIASE, using ߬ = 1.6 and ௧ = 6. We show results for
this in Fig. 5c. Looking at the upper right region of the
"Z" in Fig. 5c, we see quite a lot of zigzags. To address
this issue, we raised the thresholds to ߬ = 2.2 and
௧ = 7, producing the better line segments (free of
zigzag lines) in Fig. 5d. Further, we scaled the original
40 × 40 binary image by half, to get a 20 × 20 image.
We then passed the resulting 20 × 20 image to
ALIASE using ߬ = 1.6 and ௧ = 6. We show results of
this trial in Fig. 5e. Looking closely at Fig. 5e, one sees
that the line segment produced for the diagonal stroke
of the "Z" is too short: the diagonal stroke suffers
obliteration. To resolve this issue, we decreased the
thresholds to ߬ = 0.6 and ௧ = 5 . These new values
produced the line segments depicted in Fig. 5f. It is
obvious that, with these lower thresholds, more of the
diagonal stroke of the "Z" is now being accounted for.

Clearly, the just described experiments suggest that
appropriate threshold values increase (decrease) with
increasing (decreasing) image size. Now, as image size
increases (decreases), character width also increases
(decreases). This sheds light on what we saw in the last
row of Figure 4. The “Y” in that last row suffers over
segmentation in an area that has large width, compared
to the rest of the Y’s body. This leads us to postulate
that threshold values should depend on local widths.
We therefore propose a future study aimed at
modeling this dependence in a supervised learning
framework.

7

 Fig. 4. Sample outputs produced by ALIASE. Except on the last row, all other outputs have been produced
 using threshold values ߬ = 1.6 and ௧ = 6. On the last row, the first output, which contains zigzags in the
 upper right area, was also produced using ߬ = 1.6 and ௧ = 6. The second output, which is devoid of zigzags,
 on the last row was produced with ߬ = 1.9 and ௧ = 7.

Fig. 5. Effects of image scale on appropriate threshold values.

 (a) (b)

 (c) (d)

 (e) (f)

8

6.3 Choice of Image Form and Threshold Values for the
Worst Case Running Times of ALIASE.
Given an ݉, which ݉ × ݉ binary image yields the
worst case run time of our algorithm? We posit that it is
the ݉ × ݉ binary image all of whose pixels are
foreground pixels. This guess is informed by the idea
that this “completely filled” image should be the
"hardest" for our algorithm to break down into
primitives. In addition, we need to answer the question
of which values of ߬ and ௧ give the worst case run time
of our algorithm, on a completely filled binary image.
The first choice is easy: ߬ = 0 corresponds to the worst
case run time of ALIASE, because, for a given image, it
is a choice that “maximizes” image partitioning. The
choice of ௧ is subtlier. We want a ௧∗ that maximizes
the height of the image’s APT. We guess that ௧∗ = 2
will, and support this claim experimentally (See Fig. 6).

6.4 Worst Case Run Time of ALIASE.
Using ߬ = 0 and ௧ = 2, we set up an experiment in
which we pass completely filled ݉ × ݉ binary images
to our algorithm, starting with ݉ = 5 through ݉ = 100,
in steps of five. We set ܰ = 	݉ଶ, and plot a graph of
run time versus ܰ (the asterisked plot in Figure 7).
The non-asterisked quadratic graph in Figure 7 is a plot
of ݂(ܰ) = 10ିܰଶ. A careful study of Figure 7 reveals
that, for all ܰ ≥ 30ଶ (i.e. the "upper" sixteen asterisks in

the figure), we have ܶ(ܰ) ≤ ݂(ܰ) = 10ିܰଶ. This is a
perfect confirmation that the worst case running time
of ALIASE is ܱ(ܰଶ). The non-asterisked straight line in
the figure is a plot of ݃(ܰ) = 10ିଷܰ. A scrutiny of the
figure reveals that, for all 15ଶ ≤ ܰ ≤ 100ଶ (i.e. the
"upper" eighteen asterisks in the figure), we have
ܶ(ܰ) ≤ ݃(ܰ) = 10ିଷܰ. This says that for ݉ × ݉ images
with 15 ≤ ݉ ≤ 100, the worst case running time of
ALIASE is bounded above by a straight line whose
slope is as small as 10ିଷ seconds/pixel. This is a very
good property, because many images we are interested
in satisfy 15ଶ ≤ ܰ ≤ 100ଶ, where ܰ is number of pixels.
To belabor the point, it means that ALIASE is
exhibiting a sort of linear performance on the set of
images we are most interested in practically.

7 Conclusion and future work
In this work, we presented an algorithm, called
ALIASE, for converting binary images of line drawings
into a skeleton of line segments. The algorithm works
by iteratively partitioning an image until the object in
each sub-partition can be sufficiently (as dictated by a
pair of thresholds) approximated by the object’s axis of
least inertia. We captured the iterative partitioning
process set up by ALIASE via our so-called APTs, and
proved an upper bound on the height of the APTs.
Although this allowed us to establish a formal
quadratic bound on the algorithm, experiments
indicated the algorithm exhibits a sort of desirable
linear performance on the class of images that are of
practical importance. An advantage of ALIASE is that,
unlike traditional approaches that first thin the image

 Fig. 6. Plots of APT heights versus ௧ for: (a) a 5 × 5
 Completely Filled Binary Image (CFBI); and (b), a
 100 × 100 CFBI. Each plot peaks at ௧ = 2.

 Fig. 7. Plot (asterisked) of worst case run times
 of ALIASE with (non-asterisked) quadratic and
 straight line graphs super-imposed.

(a)

(b)

9

before extracting strokes from it, the ALIASE approach
unifies stroke extraction and thinning into a single
module. This means ALIASE is free from errors
committed during preliminary thinning. On the flip
side, a present drawback of ALIASE is that it is tied to a
pair of thresholds that must be hand-chosen for now.
Fortunately though, experiments indicate a correlation
between these thresholds and character width. We
therefore propose a future study aimed at modeling
this relationship.

References

[1] C. Liu, I. Kim, J.H. Kim, Model-based stroke

extraction and matching for handwritten chinese
character recognition, Pattern Recognition 34 (2001)
2339 – 2352.

[2] P.S. Wang and A. Gupta, An improved structural
approach for automated recognition of handprinted
characters, Int. J. Pattern Recognition and Artificial
Intell. 5 (1991) 97–121.

[3] D.H. Douglas, T.K. Peucker, Algorithms for the
reduction of the number of points required to
represent a digitized line or its caricature, Canadian
Cartographer 10(2) (1973) 112-122.

[4] W. Shen, X. Bai, R. Hu, H. Wang, L. J. Latecki,

Skeleton growing and pruning with bending potential
ratio, Pattern Recognition 44 (2011) 196–209.

[5] D. Macrini, S. Dickinson, D. Fleet, K. Siddiqi, Object
categorization using bone graphs, Comput. Vision
and Image Understanding 115 (2011), 1187-1206.

[6] J. Xie, P. Heng, M. Shah, Shape matching and

modeling using skeletal context, Pattern Recognition
41 (5) (2008) 1756–1767

[7] A. Farina, Z.M. Kovacs-Vajna, A. Leone, Fingerprint

minutiae extraction from skeletonized binary images,
Pattern Recognition 32 (1999) 877- 889.

[8] H. Blum, A transformation for extracting new
descriptors of shape, in: Proceedings of the Models for
the Perception of Speech and Visual Form,
Cambridge, MA, 1967, pp. 362–380.

[9] H. Blum, Biological shape and visual science: Part I, J.

Theoretical Biology 38 (1973) 205-287.

[10] W.P. Choi, K..M. Lam, W.C. Siu, Extraction of the
Euclidean skeleton based on a connectivity criterion,
Pattern Recognition 36 (2003) 721 – 729.

[11] Y. Ge, J. M. Fitzpatrick, On the generation of skeletons

from discrete Euclidean distance maps, IEEE Trans.
Pattern Anal. Mach. Intell. 18(11) (1996) 1055-1066.

[12] L.J. Latecki, Q. Li, X. Bai, W. Liu, Skeletonization

using SSM of the distance transform, in: Proceedings
of the IEEE Int. Conf. on Image Processing, 2007, pp.
349-352.

[13] B.B. Kimia, A.R. Tannenbaum, and S.W. Zucker,

Shape, shocks and deformations I: the components of
2d shape and the reaction-diffusion space, Int. J.
Comput. Vision 15(3) (1995) 189-224.

10

[14] D. Macrini, S. Dickinson, D. Fleet, K. Siddiqi, Bone
graphs: medial shape parsing and abstraction,
Comput. Vision and Image Understanding 115
(2011) 1044–1061.

[15] Y. Tang, X. Bai, X. Yang, L. Lin, S. Liu, L.J. Latecki,
 Skeletonization with particle filters, Int. J. Pattern
 Recognition and Artificial Intell. 24(4) (2010) 1- 16.

[16] U. Montanari, A method for obtaining skeletons using

a quasi-Euclidean distance, J. Assoc. Comput.
Machinery 15(4) (1968) 600–624.

[17] R.L. Ogniewicz, O. Kubler, Hierarchic Voronoi

skeletons, Pattern Recognition 28 (3) (1995) 343–359.

[18] P. Morrison, J.J. Zou, Skeletonization based on error
reduction, Pattern Recognition 39(6) (2006) 1099-1109.

[19] H. Liu, Z. Wu, D. F. Hsu, B.S. Peterson, D. Xu, On the

generation of skeletons using generalized voronoi
diagrams, Pattern Recognition Letters 33 (2012) 2113-
2119.

[20] L. Lam, S. Lee, C.Y. Suen, Thinning methodologies: a

comprehensive survey, IEEE Trans. Pattern Anal.
Machine Intell. 14(9) (1992) 869-885.

[21] D. Rutovitz, Pattern recognition, J. Roy. Stat. Soc.

 Series A (129) (1966) 504-530.

[22] C.J. Hilditch, Linear skeletons from square

Cupboards,.in: B. Meltzer, D. Michie (Eds.), Machine
Intelligence. Elsevier, New York, 1969, vol. 4, pp. 403-
420.

[23] M. Ahmed and R. Ward, A rotation invariant rule-

based thinning algorithm for character recognition,
IEEE Trans. Pattern Anal. Machine Intell. 24 (12)
(2002) 1672-1678.

[24] P.I. Rockett, An improved rotation-invariant thinning
algorithm, IEEE Trans. Pattern Anal. Mach. Intell. 24
(10) (2005) 1671- 1674.

[25] R.M. Haralick and L.G. Shapiro, Computer and
 Robot Vision, vol. I, Addison-Wesley, 1992.

[26] L. Shapiro, and G. Stockman, Computer Vision,
 Prentice Hall, New Jersey, 2001.

[27] T.H. Cormen, C.E. Leiserson, R.L. Rivest, C. Stein,
 Introduction to Algorithms. MIT Press, 2001.

Appendix: A statement and its proof.

Statement: For all ݉ ∈ ℤ,݊ ∈ ℤ, with ݉ ≥ 2 and
݊ ≥ 2, we have ݉ + ݊ − 3 ≤ ݉݊.

Proof :
To begin with, it should be obvious that we are
done, if we are able to show that: for all ݉ ∈ ℤ,݊ ∈
ℤ, with ݉ ≥ 2 and ݊ ≥ 2, we have ݉ + ݊ ≤ ݉݊. We
shall proceed by induction. We take our base case
to be for ݊ = 2, ݉ ≥ 2. This base case holds because
the hypothesis that ݉ ≥ 2 implies ݉ +݉ ≥ 2 + ݉
⇒ 2݉ ≥ 2 + ݉ ⇒ ݉ + 2 ≤ 2݉. For the induction
step, we must show that, if ݉ + ݊ ≤ ݉݊, then
݉ + (݊ + 1) ≤ ݉(݊+ 1). Now, ݉ + ݊ ≤ ݉݊ ⇒
݉ + ݊ + 1 ≤ ݉݊ + 1 ≤ ݉݊ +݉ = ݉(݊+ 1), where
the last inequality holds by the hypothesis that
݉ ≥ 2. This fulfills our goal.

