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Abstract 
For the case of character images, we present a first response to the question of whether the axis of least inertia can 
lead to a symmetry-seeking skeleton representation for shapes. We developed an algorithm that iteratively 
partitions an image into sub-regions until the content of each sub-region is sufficiently (as determined by two 
thresholds) approximated by its axis of least inertia.  Experiments showed the algorithm produces useful 
skeletons comprised of line strokes, when appropriate thresholds are hand-chosen.  Specifically, experiments 
suggested thresholds increase with increasing character width. Therefore, towards automatic thresholding, we 
propose a future study on modeling the relationship between thresholds and widths.  However, an advantage of 
our approach is that it unifies skeletonization and stroke extraction; unlike stroke extraction via standard routes, 
our approach is free of errors from preliminary thinning. For completeness, we studied the run time of our 
algorithm rigorously. Although rigor shows an ܱ(ܰଶ)  run time for our algorithm, experiments revealed a sort of 
desirable “linear performance.” 
 
 
1 Introduction
Imagine a sub-region of  the image of a line drawing, 
such as the English letter “F.”  If the “line” within a 
sub-region of the letter is reasonably straight, then it 
should be possible to approximate it by its axis of least 
inertia (ALI). Based on this intuition, we developed an 
algorithm, which we refer to as ALIASE (Application of 
Least Inertia Axis for Skeleton Extraction), and which 
iteratively partitions the image of a line drawing until 
the content of each sub-partition is reasonably straight, 
and can thus be approximated by its ALI. The expected 
effect is that the algorithm converts a binary image into 
a set of line segments which approximates the shape of 
the image. For an early feel, we show a sample output 
in Fig. 1, and reserve others for the section on 
"Experiments." 
  
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1. Letter "F" being Converted to a Set of Strokes.  
(a) A binary image; (b) the strokes produced by our algorithm 
for the binary image in (a)..  
 
 
Looking at Fig. 1, it is obvious that the “F” formed by 
the output line segments resemble the original binary 
image very closely. However, the line segments 
disconnected. Traditionally, connectivity is one of the 

important criteria for good skeletonization/thinning 
techniques. For graphics applications, we concur that 
connectivity is a lofty aesthetic goal worth pursuing 
assiduously. However, for recognition applications, 
which is our concern herein, we opine that connectivity 
needs not show up directly in the skeleton’s image; 
after all, the skeleton will still be segmented and 
converted into a graph, for recognition purposes. Thus, 
what matters most is whether the underlying 
connectivity information can be successfully 
transferred to the final graph recognition structure. As 
it turns out, it can be transferred. Specifically, in the 
final graph representation, the nodes corresponding to 
any two output line segments should be linked by an 
edge if and only if the binary sub-image corresponding 
to the first node contains a foreground pixel that is a 
neighbor to a foreground pixel in the binary sub-image 
corresponding to the second node. On the flip side 
though, we must highlight a strength of our approach: 
it performs thinning and stroke extraction in a single 
module, unlike traditional approaches (e.g. [1], [2]) that 
first thin the image, and then subsequently extract 
strokes from the thinned image, using say the Ramer –
Douglas-Peucker algorithm [3]. This means that our 
approach is free from errors committed at the 
preliminary thinning stage. 
 
2      Related work 
 Our work herein falls under the heading of structural 
shape representation, and, in particular, skeleton 
representations. To begin with, we point out that the 
skeleton representation paradigm leads to useful 
applications; see the works in [4], [5], [6], and  [7] for 
examples.  A key goal of skeletonization methods has 
been to implement the medial axis transform (MAT) of 
Blum [8].  The MAT of an image is the locus of the 
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centers of bi-tangential circles inscribable in the image 
[9]. As in [10] and [11], the distance transform can be 
used to implement the MAT. To obtain the distance 
transform, one first computes a distance map, which 
contains the distance of each point in the image from 
the nearest boundary point. One then locates the 
desired skeleton along the local extreme points of the 
distance transform. Recently,  Latecki et. al. [12]  have 
used the distance map   to obtain shape skeleton in a 
different way.  They first compute a “pseudo-
representation” of the distance transform field. They 
then diffuse the gradient of the result isotropically, and 
compute  a skeleton strength map from this. Finally, 
they obtain the skeleton as the local maxima of the 
strength map. 
 
Further,  a significant contribution, the well known 
shock graph, is due to Steve W. Zucker and 
collaborators [13]. The shock graph approach tracks 
singularities that occur as the closed boundary of a 
shape evolves under two types of motion: a constant 
hyperbolic conservation-law motion, acting through 
the shape’s interior, and a local curvature dependent 
parabolic conservation law motion that tends to 
smooth the boundary anisotropically.  More recently,  
Macrini et. al. [14] have improved on the shock graph, 
via what they call bone graphs. In particular, bone 
graphs are aimed at remedying the problem of over 
segmentation, which sometimes plagues shock graphs. 
What might informally pass for a “discrete version” of 
shock graphs is in the approach of [15], who computed 
skeletons by exploiting the concept that the critical 
points on the boundary of a shape correspond to 
skeletal end-points, under discrete curve evolution. 
They use particle filters to link critical points up, thus 
forming the required skeleton.  Further in the earlier 
cited work of Choi et. al. [10], based on skeleton width 
considerations,  a set of criteria are derived which a 
skeleton point’s 3 × 3 neighbourhood must satisfy. A 
pixel is dismissed as not being a skeleton point if no 
pixel in its  3 × 3 neighbourhood satisfy the criteria. 
One problem with skeleton representations has to do 
with spurious branches. In very recent work, Shen et. 
al. [4] contributed towards solving this problem. They 
proposed the bending potential ratio as a measure of 
skeleton branch significance. The bending ratio 
purportedly captures both local and global curvature 
information of shape boundary segment, and so is 
expected to be a reliable measure of skeleton branch 
significance.      
 
Probably beginning with [16], a body of research exists 
which connects Voronoi diagrams, as well as Delaunay 
triangulations with skeletonization. In this arena, we 
should mention the work of [17] who followed the 
Voronoi approach: an approach which computes 
skeletons as a subset of the Voronoi medial axis, which 
in turn is the intersection of the shape and the Voronoi 
polygons obtained using a subset of shape boundary 
points as generating points. A main contribution of [17] 

was the introduction, as a measure of skeleton branch 
significance,  of the anchor distance, which, for an edge 
of the Voronoi medial axis, is the shortest path between 
corresponding generating points along the shape’s 
boundary.  Later, Morrison and Zou [18] used 
Delaunay triangulations, in place of Voronoi diagrams, 
for obtaining skeletons. As one of their key 
contributions, they proposed a novel technique for 
choosing boundary “generating points.” Very recently, 
Liu et. al. [19] described the generalized Voronoi 
skeleton (GVS). A major difference between the GVS 
and “traditional Voronoi skeletons” is that it uses curve 
segments as generating points rather than single pixels. 
Further, they proposed shape area associated with (in 
the “shape reconstruction sense”) skeleton branch 
divided by total shape area as one of two measures of 
skeleton branch significance.  
 
Yet, a class of skeletonization methods iteratively peel 
boundary pixels from the shape, subject to shape-
remnant  connectivity, until hopefully a one-pixel 
width skeleton results. A comprehensive survey of this 
class of methods is in [20].  In this context, a 
representative approach is that of  Rutovitz [21]. He 
used crossing numbers, defined over a  3 × 3 
neighbourhood of pixels as the number of white-to-
black or black-to-white transitions,  to decide whether a 
pixel be deleted or not.  Later, Hilditch [22] introduced 
a definition of crossing numbers as approximately the 
number of white-to black transitions encountered in a 
counter-clockwise walk around the 3 × 3 pixel 
neighbourhood. A more recent work within this 
category is that of Ahmed and Ward [23]. They 
proposed a rule-based algorithm, employing twenty 
rules, defined over a 3 × 3 pixel neighbourhood, to 
determine whether pixels can be deleted or not.  For 
two-pixel wide regions, they examine 5 × 5 
neighbourhoods.  Rockett [24] improved upon the 
above algorithm, designing a two-stage strategy, whose 
first stage uses the algorithm of [23] to obtain an 
intermediate result, which is an ideal skeleton, except 
that it may contain two-pixel wide lines. The second 
stage of the strategy constructs an undirected graph 
over 3 × 3 pixel neighbourhoods; the centre pixel is 
deleted if it does not break connectivity of the graph. 
 
Our approach differs from any of the above referenced 
techniques. In typical structural character recognition 
applications, the character is first thinned using any of 
the above thinning methods. Strokes are then extracted 
from the thinned character, for example via the Ramer-
Douglas-Pecucker algorithm. However, in our 
approach, thinning and stroke extraction are combined 
into a single stage, so that our approach is free from 
errors committed during preliminary thinning.    
 
3     Illustrating ALIASE 
Although we depict the quintessence of ALIASE in the 
tree shown in Fig 2, we first give a general outline of its 
workings as follows. ALIASE begins action by first 
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using connected component labeling to determine the 
number of objects in the image space. All objects found 
are pushed unto a stack. Then, we pop out the object at 
the top of the stack. The ALI of the object is computed, 
along with the  mean  absolute deviation of all its pixels 
from the just computed axis. If the mean deviation falls 
below a pre-defined threshold, ߬, then we are done 
with that object; we need not divide it any further. We 
simply output its properties: its centroid, ALI, and 
bounding box, which are then used to draw an output 
line segment. However, if this mean deviation is 
greater than ߬, then the image is partitioned into two 
(possibly unequal) halves, either vertically or 
horizontally. We then apply connected component 
labeling to find the objects in each half, pushing all 
found objects onto the stack. At this point, a while loop 
checks if the stack is empty or not.  If it is, the 
procedure terminates. If  it is not, the next object on top 
of the stack is popped out, and the previously 
explained procedures are applied to it.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2.  An Example ALIASE Partition Tree 
 
 
In Fig. 2, we show how the letter “U” might be 
processed by ALIASE. The “U” is first divided 
horizontally into an upper region containing two 
elements; and a lower region containing one element. 
The two elements in the upper region are both 
sufficiently straight. So, they appear as leaf nodes in the 
tree. The single element in the lower region requires 
further division. It is divided horizontally into an 
upper region and a lower region. This time, all three 
elements produced by the splitting require no further 
division, and so appear as leaf nodes. 
 
We call trees of the type in Fig. 2 ALIASE Partition 
Trees (APTs). Our formal definition of an APT is a tree 
"generated" when our algorithm is invoked with an 
݉ × ݊ (݉ ≥ 2 and ݊ ≥ 2) binary image, ܫ, and a ߬ ≥ 0. 
We say that the tree in Fig. 2 has tree levels: ܮ଴,ܮଵ and 
 ଶ, with the height of a tree equal to the maximumܮ
index associated with any level in it. We take the length 
of a path through a tree to be the number of edges in 
the path.  Lastly, we refer to an object contained in the 
leaf node of an APT as a primitive. 

 
We see from the above discussion that ALIASE 
comprises five main building blocks: computation of 
axes of least inertia, which subsumes computation of 
centroids; computation of mean deviations; image 
space partitioning; connected component labeling; and 
computation of bounding boxes. 
 
4     Describing the components of ALIASE 
This section is devoted to a detailed discussion of the 
first three main building blocks of ALIASE. As for the 
fourth, we use the method in [25] ; the fifth  is a well 
known technique [26]. 
. 
4.1 Axis of Least Inertia (ALI) 
The ALI of a shape is a line which gives the direction 
along which the shape is most elongated [26].  It is a 
line which passes through the object's centroid, and 
minimizes the sum of the squares of perpendicular 
distances from itself and each point in the object [26]. If 
it is denoted by  ߙ, then it can be shown that: 
 
ߙ2  = 	 tanିଵ(	2ߤ௥௖ ൫ߤ௥௥ ⁄௖௖൯ߤ–	 	)                (1) 
   
 where ߤ௖௖ ߤ௥௥ and ߤ௥௖ are respectively the second order 
column moments,  the second order row moments, and 
the second order mixed moments of the object about its 
centroid, (ݎ,ഥ ܿ̅). In symbols, for an object ܴ, we have: 
 
௖௖ߤ  = (1 ⁄ܣ )∑ 	(ܿ − ܿ̅ோ )(ܿ − ܿ̅)                       (2) 
 
௥௥ߤ  = (1 ⁄ܣ )∑ ݎ)	 − ோݎ̅ ݎ)( −  (3)                       (ݎ̅
 
௥௖ߤ  = (1 ⁄ܣ )∑ 	(ܿ − ܿ̅ோ )(ܿ − ܿ̅)                       (4) 
 
 
4.2. Mean Deviation 
Our algorithm uses mean absolute deviation to 
distinguish between “reasonably straight” objects and 
not reasonably straight objects.  We denote the mean 
absolute deviation of an object by ݀̅,  and define it 
according to:  
 
 ݀̅ = (1/݊	)∑ ݀௜௡

௜ୀଵ                                     (5) 
 
In the object in question, ݀௜ represents the absolute 
deviation of the ݅-th pixel from the ALI; and ݊ is the 
number of pixels in that object. To be most specific, for 
each pixel, ݌௜, ݀௜ is measured from the center of ݌௜. It 
should be easy to see that, in the worst case, for an 
݉ × ݊ image, ܫ, with ܰ = ݉ × ݊,  Equation (5) requires 
ܱ(ܰ) time.  
 
We draw attention to a special type of primitives, 
which we call primitive cells. A primitive cell is an 
object which exactly fills either a 1 × ݊ image space, or 
a ݉ × 1 image space. A special property of primitive 
cells is that they have mean absolute deviation of zero. 
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4.3.  Image Space Partitioning. 
Our image space partitioning algorithm is motivated 
by one basic consideration, illustrated in Fig. 3. In the 
figure, the thick line shows what we consider a "line of 
good partitioning," while the dashed line represents 
what we consider a "line of bad partitioning." From the 
figure, we see that each time the line representing a 
good partitioning enters an object, ܴ, through some 
foreground pixel having row (or column) co-ordinates 
ܽ, it quickly exits it via another foreground pixel 
having row (or column) co-ordinates  ܾ, with the 
quantity |ܾ − ܽ| being "small." On the other hand, for 
lines of bad partitioning,  there is at least one instance 
wherein the line enters the object via a foreground pixel 
having row (or column) co-ordinate ܽᇱ and exits via 
another pixel with row (or column) co-ordinate ܾᇱ, with 
the quantity |ܾᇱ − ܽᇱ| being "large." Physically, good 
partitioning tends to preserve the line segments being 
sought by ALIASE, while bad partitioning tends to 
destroy them. Via experimentation, it is possible to 
arrive at a threshold, ݌௧, such that whenever |ܾ − ܽ| ≤
 ,௧, the partitioning in question is considered good; else݌
it is deemed bad. 
 
 
 
 
 
 
 
 
 
 
 
 
 
    Fig. 3. Good versus Bad Lines of Partitioning. The   
    thick line is a line of good partitioning, but the thin   
    line is a line of bad partitioning. 
 
 
The aim is divide the image (or sub-image), ܫ, into two 
sub-images via the line of good partitioning closest 
either to the middle row or the middle column of ܫ.  
Without loss of generality, for the case wherein the 
number of columns, ݊, is greater than or equal to the 
number of rows, ݉, of ܫ, then the order in which our 
algorithm searches for a line of good partitioning is 
specified by the ordered set, ܵ௅,:   
ܵ௅ = ݎ} = ܿ ,௠ݎ = ܿ௠, ݎ = ௠ݎ + 1, ܿ = ܿ௠ + ݎ ,1 = ௠ݎ − 1,
ܿ = ܿ௠ − 1, ݎ = ௠ݎ + 2,	ܿ = ܿ௠ + 2, ݎ = ௠ݎ − 2, ܿ = ܿ௠ −
2, ⋯ , ݎ = 1, ⋯, ܿ = 1}; where ݎ௠ and ܿ௠ respectively 
denote the (ݎ, ܿ) raster co-ordinates of the middle row 
and middle column of  ܫ. If no line of good partitioning 
is found in ܵ௅, the image is arbitrarily divided along ݎ௠ 
.  
 
 
 
 

5     Maximum height of partition trees and maximum    
       run time of ALIASE 
In this section, we conduct a formal analysis of the run 
time of ALIASE. We follow the analysis of merge sort 
algorithm in [27]. The idea is to sum the count of 
operations at each level of the tree "generated" by the 
algorithm (for our purpose, ALIASE partition trees, or 
APT) over the maximum height of the tree.  Towards 
this goal, we first need to place a bound on the height 
of APT. We then count operations at each level of the 
tree, and then sum up this count over the height of the 
tree. We claim that, for any ݉ × ݊ image, ܫ, (with ݉ ≥ 2 
and ݊ ≥ 2) the height of any APT rooted at ܫ cannot 
exceed ݉ + ݊ − 3. Towards proving this claim, we need 
some formalism: 
  
 
 
Definition 1.  Let ܶ be a tree whose nodes are 
rectangular sub-images. We refer to ܶ as a partition tree 
if: 
1). The root node of ܶ holds an ݉ × ݊ image with ݉ ≥ 2 
and ݊ ≥ 2. 
2). Each non-leaf node, ݒ, in ܶ has children ݒଵ,ݒଶ,⋯ ,  ௟ݒ
satisfying: ݒଵ ∪ ଶݒ ∪⋯∪ ௟ݒ ⊂ ଵݒ and ݒ ∩ ଶݒ ∩⋯∩ ௟ݒ =
∅. 
3). In ܶ, any node, ݒ, holding an ݎ × ܿ sub-image cannot 
bear children, if either  ݎ = 1	or ܿ = 1.    
  
 
Let us observe the relationship between the definition 
of a partition tree, given above, and that of an APT, 
given earlier in Section 3. In particular, let us appreciate 
how the third condition above stipulates that primitive 
cells (a type of primitives)  cannot be further 
partitioned. This is in perfect consonance with what 
happens within APTs, wherein primitives, which 
subsume primitive cells,  cannot be further partitioned. 
The crux of our juxtaposition should be the realization 
that: all APTs are instances of partition trees, but not all 
partition trees are APTs. A strong benefit of this is that 
properties, such as upper or lower bounds, that apply 
to partition trees will also apply to APTs as well. 
 
 
Definition 2. Suppose ܲ = ⋯,ଵݒ,଴ݒ ,  ௟ is a path ofݒ
length ݈ in a partition tree, ܶ. We call ܲ a root path in ܶ, 
if ݒ଴ is the root node of  ܶ. 
 
Definition 3. Given a path ܲ =  ௟ in a partitionݒ⋯ଵݒ,଴ݒ
tree, ܶ. We say that ܲ is prudent if, for each node 
݅)௜ݒ ≥ 1) in ܲ, the sub-image at ݒ௜ is smaller than  that 
at ݒ௜'s parent node, ݒ௜ିଵ, by exactly one row or column. 
 
We are ready to state the first lemma of this section: 
 
Lemma 1. Let ܶ be a partition tree rooted at an image ܫ, 
and let ݈∗ be the maximum possible length of any root 
path in ܶ. If a given root path, ܲ, in ܶ has length ݈∗, then 
ܲ is prudent 

  
ݎ   = ܽᇱ                     		ݎ = ܽ 
                                     
                                       
ݎ                                  = ܾ 
 
 
 
ݎ   = ܾᇱ 
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Proof We go by contradiction. Let 
ܲ = ⋯,ଵݒ,଴ݒ , ௜ݒ,௜ିଵݒ ,⋯ ,  ௟ be a root path of lengthݒ,௟ିଵݒ
݈ in some partition tree ܶ. Suppose ݈ = ݈∗, but that ܲ is 
not prudent. For each node ݒ௜ (݅ ≥ 1), in ܲ, the sub-
image at ݒ௜ must be smaller than  that at ݒ௜'s parent 
node, ݒ௜ିଵ, by at least one row or column. Otherwise, 
no partitioning occurred at ݒ௜ିଵ; so, how did ݒ௜ come 
about ? Now, by the supposition that ܲ is not prudent, 
it means there is  at least one pair of consecutive nodes 
 ௜ିଵ by eitherݒ ௜ is smaller thanݒ ௜ in ܲ such thatݒ,௜ିଵݒ
more than one row or more than one column. Without 
loss of generality, assume, for example, that ݒ௜ is 
smaller than ݒ௜ିଵ by ݎ + 1 rows (ݎ ≥ 1). This allows for 
the possible existence of another path ܲᇱ which can be 
built from ܲ, by simply introducing extra ݎ nodes 
between ݒ௜ିଵ and ݒ௜, such that each of these extra nodes 
differs from its parent node by exactly one row. 
Labeling these ݎ nodes as ݒଵ,ݒଶ,⋯ ,  ௥, the pathݒ
between ݒ௜ିଵ and ݒ௜ becomes ݒ௜ିଵ,ݒଵ,ݒଶ,⋯ , ௥ݒ ,  ௜, soݒ
that ܲᇱ can be written 
ܲᇱ = 	 ⋯,ଵݒ,଴ݒ , ⋯,ଶݒ,ଵݒ,௜ିଵݒ ௥ݒ, , ௜ݒ ,⋯ ,  ௟. Thisݒ,௟ିଵݒ
makes it clear that the length of ܲᇱ is ݈ + ݎ = ݈∗ +  ,ݎ
which is greater than ݈∗; a contradiction of the 
supposition that ݈∗ is the maximum possible length of 
any root path in ܶ. 
 
We proceed with: 
 
 
Lemma 2. The maximum possible length, ݈ ∗, of any root 
path in any partition tree, ܶ, rooted at an ݉ × ݊ image, 
݉ is ,ܫ + ݊ − 3.  In other words: ݈∗ ≤ 	݉ + ݊ − 3.  
 
Proof.   Notice Lemma 2 requires us to show ݈∗ < ݉ +
݊ − 2. Now, suppose ܲ = ⋯,ଵݒ,଴ݒ ,  ௟ is a root path withݒ
length ݈∗. By Lemma 1, ܲ is prudent: each edge in ܲ 
corresponds to either a loss of exactly one row, or a loss 
of exactly one column. But these rows and columns 
being lost come from a finite store of ݉ rows and ݊ 
columns contained in the image, ܫ, at the root node, ݒ଴, 
of ܶ. This allows us to write:  ݈∗ ≤ (݉− 1) + (݊ − 1) =
݉ + ݊ − 2; that is, we can lose at most (݉− 1) rows  
and at most (݊ − 1) columns from ܫ, because the sub-
image at the last node, ݒ௟, in ܲ must, at least, subsume a 
pixel. It should be clear that, if we can show that 
݈∗ ≠ ݉ + ݊ − 2, then we are done. Towards this, 
suppose, for a contradiction, that ݈∗ = (݉− 1) + (݊ −
1), and then introduce a formalism: a sequence ሬܴ⃑  of 
horizontal and vertical razors, such that an horizontal 
razor, denoted ℎሬ⃑ , removes a single row from an image, 
while a vertical razor, denoted ⃑ݒ, removes a single 
column from an image. In essence, each ℎሬ⃑  corresponds 
to an edge in path ܲ; likewise each ⃑ݒ. With this, it 
means to lose ݉− 1 rows and ݊ − 1 columns from an 
݉ × ݊ image, ܫ, we need a set ሬܴ⃑  containing ݉− 1 ℎሬ⃑ 's as 
well as ݊ −  s. Now, observe that a primitive cell will'ݒ⃑ 1
occur in ܲ either once the (݉− 1)-th ℎሬ⃑  is encountered 
in ሬܴ⃑ , or once the (݊ − 1)-th ⃑ݒ is encountered in ሬܴ⃑ . But 
according to the third condition in our formal 
definition of partition trees, ܲ can have only one 

primitive-cell node, and this primitive-cell node will be 
the last node of ܲ. Therefore, the razor which causes a 
primitive cell to occur must be in the last position of ሬܴ⃑ . 
So, if both the (݉− 1)-th ℎሬ⃑  and the (݊ − 1)-th ⃑ݒ must 
co-exist in ሬܴ⃑ , they must both occupy the last position in 
ሬܴ⃑ , simultaneously: a sheer contradiction. 
 
With the aid of Lemma 2, we arrive at a key result: 
 
 
Theorem 1. The maximum possible height, ℎ∗, of any 
partition tree, ܶ, rooted at an ݉ × ݊ image, ܫ, is 
݉ + ݊ − 3.  In other words: ℎ∗ ≤ 	݉ + ݊ − 3. 
 
 
Proof. Consider a specific partition tree, ܶ, rooted at an 
݉ × ݊ image, ܫ. Following the definition given near the 
end of Section 3, the height, ℎ், of ܶ is equal to the 
maximum index, ்݅, associated with any level of ܶ. 
Looking at Fig. 2 in that section,  ்݅ is also the length, 
்݈, of the "longest" root path in ܶ. We may thus write, 
ℎ் = ்݅ = ்݈. Therefore, across all possible partition 
trees that can be generated on ܫ, the maximum possible 
height, ℎ∗, of any of such trees must equal the 
maximum possible length ݈∗ of any of them.  
Consequently, by virtue of Lemma 2, we have:  
ℎ∗ = ݈∗ ≤ 	݉ + ݊ − 3.. 
 
 
Remark 1. Since APTs are examples of partition trees, 
Theorem 1 applies as well to APTs . 
 
We can now show that our algorithm runs in ܱ(ܰଶ) 
time. As earlier mentioned,  the idea is to sum the 
count of operations at each level of an APT  over the 
maximum possible height of the APT.  From Theorem 
1, we already know that, for an ݉ by ݊ image, the 
maximum possible height of any partition tree 
generated by our algorithm is ݉ + ݊ − 3. Therefore, 
what remains is to track the operations at each level of 
our APTs. Towards this, we note that, if the image at 
the root of an APT contains ܰ pixels, then no matter 
how the partitioning proceeds, there will be  a total of 
ܰ pixels at any level of the APT.  Now, at any node of 
an APT, there is maximum of five kinds of major 
operations to be performed: computation of connected 
component labels; computation of bounding boxes; 
computation of axes of least inertia, which subsumes 
computation of centroids; computation of mean 
absolute deviations; and computation of lines of good 
partitioning.  Each of these take a maximum of ܱ(ܲ) 
time for a sub-image of ܲ pixels. Since there is a total of  
exactly ܰ pixels at any level of an APT, we conclude 
that a total time of ܱ(5ܰ) = ܱ(ܰ) is spent at each level 
of the APT. Hence, the total amount of time across all 
levels is ܱ൫	ܰ(݉ + ݊ − 3)൯. Now, via induction, it is shown 
in the appendix that, for all ݉ ∈ ℤ,݊ ∈ ℤ, such that ݉ ≥ 2 
and ݊ ≥ 2, we have ݉ + ݊ − 3 ≤ ݉݊ = ܰ. Thus the total 
time taken by our method is ܱ൫	ܰ(݉ + ݊ − 3)൯ =
ܱ(ܰଶ). We shall soon confirm this  experimentally. 
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6     Experiments 
We exhibit results of ALIASE for characters of the 
English alphabet; explore the variation of threshold 
values, ߬ and ݌௧ with image scale, and hence character 
width; answer the question of which image form, and 
threshold values, cause ALIASE to run for the longest 
time;  and plot worst-case running times of ALIASE.  
 
6.1  Line Segments Computed by ALIASE  
We tested our algorithm on 40 × 40 handwritten 
uppercase English letters.  We show sample results in 
Figure 4. Except for the last row, all other outputs in 
the figure have been produced using thresholds ߬ = 1.6  
and ݌௧ = 6. The key thing to notice about the outputs 
(except those on the last row) is that ALIASE is capable 
of producing line segments which resemble the 
original image. As was pointed out in Section 1, the  
line segments output by ALIASE are disconnected, but 
this is not a source of worry in recognition applications, 
since connectivity information can still be extracted 
directly from the underlying binary image (as 
explained in Section 1). A key source of worry however 
is that a single pair of threshold values does not work 
for all 40 × 40 binary images. For example the 
threshold pair,  ߬ = 1.6 and ݌௧ = 6, does not work well 
for the 40 × 40  binary image of “Y” on the last row of 
Figure 4. Rather, we found that ߬ = 1.9 and ݌௧ = 7  
works well for it. Specifically, when we tried ߬ = 1.6 
and ݌௧ = 6 on that “Y”, we got the output immediately 
to the right of the original binary image of the “Y.” 
Notice that that output contains undesirable zigzag 
lines (due to over segmentation) in the upper right 
area. A careful scrutiny of the original binary image 
shows that  its upper right area is markedly fatter than 
the other areas; observe the two bulges, one to the left 
and one to the right, in that upper right area. This 
suggests that the reason why the zigzag lines showed 
up in the upper right area of the output is that that area 
corresponds to a fat area in the original image. To 
remove the zigzags, we simply increased the threshold 
values from  ߬ = 1.6 and ݌௧ = 6 to ߬ = 1.9 and ݌௧ = 7. 
This resulted in the second output on the last row of 
Figure 4. Notice especially that the zigzag lines have 
now disappeared. This hints at the hypothesis that 
threshold values increase with character width, a topic 
which we explore in greater details in the next sub-
section. 

 
6.2  Variation of ߬ and ݌௧ with Image Size and Character 
Width 
Suppose ALIASE works well with thresholds ߬ଵ and 
 ,ଶܫ ଵ is enlarged to yieldܫ ଵ. Whenܫ ,௧,ଵ on an image݌
there would be a need to increase the thresholds to 
new values ߬ଶ and ݌௧,ଶ. The reason for increasing ߬ଵ  is 
that any given primitive line in ܫଶ will be thicker, and 
consequently have higher mean absolute deviation, 
than its counterpart in ܫଵ. Therefore in ܫଶ, the mean 
absolute deviation corresponding to the primitive line 
may not fall below ߬ଵ. Hence, in the image ܫଶ, the  
"given primitive line" might be further partitioned by 

ALIASE, resulting in a situation wherein a primitive is 
unnecessarily further divided. This causes over 
segmentation and causes ALIASE to output zigzag 
lines. The rationale for the needed increment in ݌௧,ଵ is 
that, since the strokes in ܫଶ will be thicker than their 
counterparts in image ܫଵ, it would be generally harder 
to find lines of good partitioning in ܫଶ using ݌௧,ଵ.    
 
 Conversely, when ܫଵ is reduced in size to obtain a new 
image ܫ଴, there would be a need to  decrease the 
thresholds ߬ଵ and ݌௧,ଵ  to new values ߬଴ and ݌௧,଴. The 
reason for the needed reduction in ߬ଵ is that any given 
primitive line in  ܫ଴ will be thinner, and thus have 
lower mean absolute deviation, than its counterpart in 
the original image ܫଵ. As such, while primitives alone 
yielded values of mean absolute deviations falling 
below ߬ଵ in the image ܫଵ, it would be possible for non-
primitives, along with primitives, to yield values of 
mean absolute deviations falling below the value ߬ଵ in 
the case of image ܫ଴. In ܫ଴, this results in a situation in 
which non-primitives are taken as primitives by 
ALIASE. This can cause obliteration, a situation in 
which significant portions of the original image are not 
accounted for by the output line segments.  
 
Fig. 5a shows a 40 × 40 binary image which is 
converted by ALIASE, using ߬ = 1.6 and ݌௧ = 6, to the 
line segments in Fig. 5b. Next, we enlarged the binary 
image by a factor of two, producing thereby an 80 × 80 
image. We then passed this 80 × 80 binary image to 
ALIASE, using ߬ = 1.6 and ݌௧ = 6. We show results for 
this in Fig. 5c. Looking at the upper right region of the 
"Z" in Fig. 5c, we see quite a lot of zigzags. To address 
this issue, we raised the thresholds to ߬ = 2.2 and 
௧݌ = 7, producing the better line segments (free of 
zigzag lines) in Fig. 5d. Further, we scaled the original 
40 × 40 binary image by half, to get a 20 × 20 image. 
We then passed the resulting 20 × 20  image to 
ALIASE using ߬ = 1.6 and ݌௧ = 6. We show results of 
this trial in Fig. 5e. Looking closely at Fig. 5e, one sees 
that the line segment produced for the diagonal stroke 
of the "Z" is too short: the diagonal stroke suffers 
obliteration. To resolve this issue, we decreased the 
thresholds to  ߬ = 0.6 and ݌௧ = 5 . These new values 
produced the line segments depicted in Fig. 5f. It is 
obvious that, with these lower thresholds, more of the 
diagonal stroke of the "Z" is now being accounted for. 
 
Clearly, the just described experiments suggest that 
appropriate threshold values increase (decrease) with 
increasing (decreasing) image size.  Now, as image size 
increases (decreases), character width also increases 
(decreases). This sheds light on what we saw in the last 
row of Figure 4. The “Y” in that last row suffers over 
segmentation in an area that has large width, compared 
to the rest of the Y’s body. This leads us to postulate 
that threshold values should depend on local widths. 
We therefore propose a future study aimed at 
modeling this dependence in a supervised learning 
framework.  
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        Fig. 4. Sample outputs produced by ALIASE. Except on the last row, all other outputs have been produced 
        using threshold values ߬ = 1.6 and ݌௧ = 6. On the last row, the first output, which contains zigzags in the  
        upper right area, was also produced using ߬ = 1.6 and ݌௧ = 6. The second output, which is devoid of zigzags, 
        on the last row was produced with ߬ = 1.9 and ݌௧ = 7. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                             
Fig. 5. Effects of image scale on appropriate threshold values. 

 
 
 

  

        

        

        

        

        

        

    

   

  

 

 
            (a)                          (b)      
 

                                                             (c)                                        (d)    

 

      (e)                              (f)  

  

  

  



 

8  

6.3  Choice of Image Form and Threshold Values for the 
Worst Case Running Times of ALIASE.  
Given an ݉, which ݉ × ݉ binary image yields the 
worst case run time of our algorithm? We posit that it is 
the ݉ × ݉ binary image all of whose pixels are 
foreground pixels. This guess is informed by the idea 
that this “completely filled” image should be the 
"hardest" for our algorithm to break down into 
primitives. In addition, we need to answer the question 
of which values of ߬ and ݌௧ give the worst case run time  
of our algorithm, on a completely filled binary image. 
The first choice is easy: ߬ = 0 corresponds to the worst 
case run time of ALIASE, because, for a given image, it 
is a choice that “maximizes” image partitioning.  The 
choice of ݌௧ is subtlier. We want a ݌௧∗ that maximizes 
the height of the image’s APT. We guess that ݌௧∗ = 2 
will, and support this claim experimentally (See Fig. 6). 
 
6.4  Worst Case Run Time of ALIASE.  
Using ߬ = 0 and ݌௧ = 2, we set up an experiment in 
which we pass completely filled ݉ × ݉ binary images 
to our algorithm, starting with ݉ = 5 through ݉ = 100, 
in steps of five.  We set ܰ = 	݉ଶ, and plot a graph of 
run time versus ܰ ( the asterisked plot in Figure 7).  
The non-asterisked quadratic graph in Figure 7 is a plot 
of ݂(ܰ) = 10ି଺ܰଶ. A careful study of Figure 7 reveals 
that, for all ܰ ≥ 30ଶ (i.e. the "upper" sixteen asterisks in  
 
the figure), we have ܶ(ܰ) ≤ ݂(ܰ) = 10ି଺ܰଶ. This is a 
perfect confirmation that the worst case running time 
of ALIASE is ܱ(ܰଶ). The non-asterisked straight line in 
the figure is a plot of ݃(ܰ) = 10ିଷܰ. A scrutiny of the 
figure reveals that, for all  15ଶ ≤ ܰ ≤ 100ଶ (i.e. the 
"upper" eighteen asterisks in the figure), we have 
ܶ(ܰ) ≤ ݃(ܰ) = 10ିଷܰ. This says that for ݉ × ݉ images 
with 15 ≤ ݉ ≤ 100, the worst case running time of  
ALIASE is bounded above by a straight line whose 
slope is as small as 10ିଷ seconds/pixel.  This is a very 
good property, because many images we are interested 
in satisfy 15ଶ ≤ ܰ ≤ 100ଶ, where ܰ is number of pixels. 
To belabor the point, it means that ALIASE is 
exhibiting a sort of linear performance on the set of 
images we are most interested in practically. 
 
7    Conclusion and future work 
In this work, we presented an algorithm, called 
ALIASE, for converting binary images of line drawings 
into a skeleton of  line segments.  The algorithm works 
by iteratively partitioning an image until the object in 
each sub-partition can be sufficiently (as dictated by a 
pair of thresholds) approximated  by the object’s axis of 
least inertia. We captured the iterative partitioning 
process set up by ALIASE via our so-called APTs, and 
proved an upper bound on the height of the APTs. 
Although this allowed us to establish a formal 
quadratic bound on the algorithm, experiments 
indicated the algorithm exhibits a sort of desirable 
linear performance on the class of images that are of 
practical importance. An advantage of ALIASE is that, 
unlike traditional approaches that first thin the image  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
            Fig. 6. Plots of APT heights versus ݌௧  for: (a) a 5 × 5  
            Completely Filled Binary Image (CFBI); and (b), a  
            100 × 100  CFBI. Each plot peaks at ݌௧ = 2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
            Fig. 7. Plot (asterisked) of worst case run times   
              of  ALIASE with (non-asterisked) quadratic and  
             straight line graphs super-imposed. 
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before extracting strokes from it,  the ALIASE approach 
unifies stroke extraction and thinning into a single 
module. This means ALIASE is free from errors 
committed during preliminary thinning. On the flip 
side, a present drawback of ALIASE is that it is tied to a 
pair of thresholds that must be hand-chosen for now. 
Fortunately though, experiments indicate a correlation 
between these thresholds and character width. We 
therefore propose a future study aimed at modeling 
this relationship.  
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Appendix:  A statement and its proof. 
 
 
Statement:  For all ݉ ∈ ℤ,݊ ∈ ℤ, with ݉ ≥ 2 and 
݊ ≥ 2, we have ݉ + ݊ − 3 ≤ ݉݊. 
 
Proof :  
To begin with, it should be obvious that we are 
done, if we are able to show that: for all ݉ ∈ ℤ,݊ ∈
ℤ, with ݉ ≥ 2 and ݊ ≥ 2, we have ݉ + ݊ ≤ ݉݊. We 
shall proceed by induction. We take our base case 
to be for ݊ = 2, ݉ ≥ 2. This base case holds because 
the hypothesis that ݉ ≥ 2 implies ݉ +݉ ≥ 2 + ݉ 
⇒  2݉ ≥ 2 + ݉ ⇒  ݉ + 2 ≤ 2݉.  For the induction 
step, we must show that, if ݉ + ݊ ≤ ݉݊, then 
݉ + (݊ + 1) ≤ ݉(݊+ 1). Now, ݉ + ݊ ≤ ݉݊  ⇒  
݉ + ݊ + 1 ≤ ݉݊ + 1 ≤ ݉݊ +݉ = ݉(݊+ 1), where 
the last inequality holds by the hypothesis that 
݉ ≥ 2. This fulfills our goal. 
 

 
 
 
 
 
 
 
 
 
 


